|
|
|
|
LEADER |
02676nam a2200493 4500 |
001 |
978-3-540-44475-6 |
003 |
DE-He213 |
005 |
20191026121756.0 |
007 |
cr nn 008mamaa |
008 |
121227s2004 gw | s |||| 0|eng d |
020 |
|
|
|a 9783540444756
|9 978-3-540-44475-6
|
024 |
7 |
|
|a 10.1007/b98488
|2 doi
|
040 |
|
|
|d GrThAP
|
050 |
|
4 |
|a QA241-247.5
|
072 |
|
7 |
|a PBH
|2 bicssc
|
072 |
|
7 |
|a MAT022000
|2 bisacsh
|
072 |
|
7 |
|a PBH
|2 thema
|
082 |
0 |
4 |
|a 512.7
|2 23
|
100 |
1 |
|
|a Brown, Martin L.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
245 |
1 |
0 |
|a Heegner Modules and Elliptic Curves
|h [electronic resource] /
|c by Martin L. Brown.
|
250 |
|
|
|a 1st ed. 2004.
|
264 |
|
1 |
|a Berlin, Heidelberg :
|b Springer Berlin Heidelberg :
|b Imprint: Springer,
|c 2004.
|
300 |
|
|
|a X, 518 p.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Lecture Notes in Mathematics,
|x 0075-8434 ;
|v 1849
|
505 |
0 |
|
|a Preface -- Introduction -- Preliminaries -- Bruhat-Tits trees with complex multiplication -- Heegner sheaves -- The Heegner module -- Cohomology of the Heegner module -- Finiteness of the Tate-Shafarevich groups -- Appendix A.: Rigid analytic modular forms -- Appendix B.: Automorphic forms and elliptic curves over function fields -- References -- Index.
|
520 |
|
|
|a Heegner points on both modular curves and elliptic curves over global fields of any characteristic form the topic of this research monograph. The Heegner module of an elliptic curve is an original concept introduced in this text. The computation of the cohomology of the Heegner module is the main technical result and is applied to prove the Tate conjecture for a class of elliptic surfaces over finite fields; this conjecture is equivalent to the Birch and Swinnerton-Dyer conjecture for the corresponding elliptic curves over global fields.
|
650 |
|
0 |
|a Number theory.
|
650 |
|
0 |
|a Algebraic geometry.
|
650 |
1 |
4 |
|a Number Theory.
|0 http://scigraph.springernature.com/things/product-market-codes/M25001
|
650 |
2 |
4 |
|a Algebraic Geometry.
|0 http://scigraph.springernature.com/things/product-market-codes/M11019
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer eBooks
|
776 |
0 |
8 |
|i Printed edition:
|z 9783540222903
|
776 |
0 |
8 |
|i Printed edition:
|z 9783662209325
|
830 |
|
0 |
|a Lecture Notes in Mathematics,
|x 0075-8434 ;
|v 1849
|
856 |
4 |
0 |
|u https://doi.org/10.1007/b98488
|z Full Text via HEAL-Link
|
912 |
|
|
|a ZDB-2-SMA
|
912 |
|
|
|a ZDB-2-LNM
|
912 |
|
|
|a ZDB-2-BAE
|
950 |
|
|
|a Mathematics and Statistics (Springer-11649)
|