Linear Chaos

It is commonly believed that chaos is linked to non-linearity, however many (even quite natural) linear dynamical systems exhibit chaotic behavior. The study of these systems is a young and remarkably active field of research, which has seen many landmark results over the past two decades. Linear dy...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Grosse-Erdmann, Karl-G (Συγγραφέας), Peris Manguillot, Alfred (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London, 2011.
Σειρά:Universitext,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03592nam a22005175i 4500
001 978-1-4471-2170-1
003 DE-He213
005 20151125021747.0
007 cr nn 008mamaa
008 110822s2011 xxk| s |||| 0|eng d
020 |a 9781447121701  |9 978-1-4471-2170-1 
024 7 |a 10.1007/978-1-4471-2170-1  |2 doi 
040 |d GrThAP 
050 4 |a QA313 
072 7 |a PBWR  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.39  |2 23 
082 0 4 |a 515.48  |2 23 
100 1 |a Grosse-Erdmann, Karl-G.  |e author. 
245 1 0 |a Linear Chaos  |h [electronic resource] /  |c by Karl-G. Grosse-Erdmann, Alfred Peris Manguillot. 
264 1 |a London :  |b Springer London,  |c 2011. 
300 |a XII, 388 p. 28 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 0172-5939 
505 0 |a Topological dynamics -- Hypercyclic and chaotic operators -- The Hypercyclicity Criterion -- Classes of hypercyclic and chaotic operators -- Necessary conditions for hypercyclicity and chaos -- Connectedness arguments in linear dynamics -- Dynamics of semigroups, with applications to differential equations -- Existence of hypercyclic operators -- Frequently hypercyclic operators -- Hypercyclic subspaces -- Common hypercyclic vectors -- Linear dynamics in topological vector spaces. 
520 |a It is commonly believed that chaos is linked to non-linearity, however many (even quite natural) linear dynamical systems exhibit chaotic behavior. The study of these systems is a young and remarkably active field of research, which has seen many landmark results over the past two decades. Linear dynamics lies at the crossroads of several areas of mathematics including operator theory, complex analysis, ergodic theory and partial differential equations. At the same time its basic ideas can be easily understood by a wide audience. Written by two renowned specialists, Linear Chaos provides a welcome introduction to this theory. Split into two parts, part I presents a self-contained introduction to the dynamics of linear operators, while part II covers selected, largely independent topics from linear dynamics. More than 350 exercises and many illustrations are included, and each chapter contains a further ‘Sources and Comments’ section. The only prerequisites are a familiarity with metric spaces, the basic theory of Hilbert and Banach spaces and fundamentals of complex analysis. More advanced tools, only needed occasionally, are provided in two appendices. A self-contained exposition, this book will be suitable for self-study and will appeal to advanced undergraduate or beginning graduate students. It will also be of use to researchers in other areas of mathematics such as partial differential equations, dynamical systems and ergodic theory. 
650 0 |a Mathematics. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a Functional analysis. 
650 0 |a Operator theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Operator Theory. 
700 1 |a Peris Manguillot, Alfred.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781447121695 
830 0 |a Universitext,  |x 0172-5939 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4471-2170-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)